Research Results
I. Blanco-Chacón, A. Pedrouzo-Ulloa, R. Yuh Njah, B. Barbero-Lucas, “Fast Polynomial Arithmetic in Homomorphic Encryption with Cyclo-Multiquadratic Fields”, Cryptography and Communications (Springer), 2025.
DOI: 10.1007/s12095-024-00771-6
C. Beis-Penedo, F. Troncoso-Pastoriza, R. P. Díaz‐Redondo, A. Fernández‐Vilas, M. Fernández‐Veiga, “A Blockchain Solution for Decentralized Machine Learning for IoT”, Computer Communications, 2024 (en revisión).
Preprint: https://arxiv.org/abs/2311.14136
D. Cajaraville-Aboy, A. Fernández Vilas, R. P. Díaz-Redondo, M. Fernández-Veiga, “Byzantine-Robust Aggregation for Securing Decentralized Federated Learning”, Future Generation Computer Systems, 2024 (en revisión).
Preprint: https://arxiv.org/abs/2409.17754
P. García Santaclara, R. P. Díaz-Redondo, B. Fernández-Castro, “TRIL3: Continual Learning for efficient IoT settings”, Engineering Applications of Artificial Intelligence, 2024 (en revisión).
A. Montibeller and F. Pérez-González, “An Adaptive Method for Camera Attribution Under Complex Radial Distortion Corrections”, IEEE Transactions on Information Forensics and Security , vol. 19, pp. 385-400, 2024. 5
DOI: 10.1109/OJCOMS.2024.346042
E. Espozo, M. Fernández-Veiga, F. Troncoso-Pastoriza, “Generalized Hierarchical Coded Caching”, Journal of Network and Computer Applications, 2024.
DOI: 10.1016/j.jnca.2024.104027
T. Lestayo-Martínez, M. Fernández-Veiga, “Source-Coded Multicast with Single and Aggregated Sources for Efficient Content Delivery”, IEEE Open Journal of the Communications Society, 2024.
DOI: 10.1109/OJCOMS.2024.3460422
E. Rodríguez-Lois, F. Pérez-González, “Collusion-resistant Black-box Watermarking in Federated Learning through Weight Relevance Analysis”, IEEE ICASSP 2025.
DOI: [Pending]
X. Martínez-Luaña, M. Fernández-Veiga, R. Díaz-Redondo, “Privacy-aware Berrut Approximated Coded Computing applied to Federated Learning”, IEEE International Workshop on Information Forensics and Security (WIFS), 2024.
DOI: 10.1109/WIFS61860.2024.10810717
E. Rodríguez-Lois, F. Pérez-González, “Exploring Federated Learning Dynamics for Black-and-White-Box DNN Traitor Tracing”, 2nd IEEE International Conference on Federated Learning Technologies and Applications (FLTA), 2024.
DOI: 10.1109/FLTA63145.2024.10840113
M. Morona-Mínguez, A. Pedrouzo-Ulloa, F. Pérez-González, “A Critical Look into Threshold Homomorphic Encryption for Private Average Aggregation”, 2nd IEEE International Conference on Federated Learning Technologies and Applications (FLTA), 2024.
DOI: 10.1109/FLTA63145.2024.10840167
C. Beis-Penedo, R. P. Díaz-Redondo, A. Fernández-Vilas, F. Troncoso-Pastoriza, M. Fernández-Veiga, “Blockchain Support for Verifiable Split Learning”, International Conference on Semantic Computing (ICSC), 2024.
DOI: 10.1109/ICSC63108.2024.10895630
A. Montibeller, R. Asiku, F. Pérez-González, G. Boato, “Shedding Light on some Leaks in PRNU-based Source Attribution”, 12th ACM Workshop on Information Hiding and Multimedia Security (IHMMSEC), Baiona, Spain, June 2024.
DOI: 10.1145/3658664.3659654
J. Bossuat, R. Cammarota, Jung Hee Cheon, Ilaria Chillotti, Benjamin R. Curtis, Wei Dai, Huijing Gong, Erin Hales, Duhyeong Kim, Bryan Kumara, Changmin Lee, Xianhui Lu, Carsten Maple, Alberto Pedrouzo-Ulloa, Rachel Player, Luis Antonio Ruiz Lopez, Yongsoo Song, Donggeon Yhee, Bahattin Yildiz, “Security Guidelines for Implementing Homomorphic Encryption”, FHE.org Conference, Toronto, Canada, March 2024.
DOI: [Pending]
E. Rodríguez-Lois, F. Pérez-González, “Towards Traitor Tracing in Black-and-White-Box DNN Watermarking with Tardos-based Codes”, IEEE International Workshop on Information Forensics and Security (WIFS), Nuremberg, Germany, December 2023.
DOI: 10.1109/WIFS58808.2023.10374879